A data-integrated simulation model to evaluate nurse-patient assignments
2009
Health Care Manag Sci
3
12
252-68
Journal_Article
Wards||Personnel_Planning_and_Scheduling
Statistics||Simulation
Operational_Offline
NA
No
Article Link
Sundaramoorthi, D. C., V. C.; Rosenberger, J. M.; Kim, S. B.; Buckley-Behan, D. F. (2009). A data-integrated simulation model to evaluate nurse-patient assignments. [Journal Article]. Health Care Manag Sci, 12(3), 252-268.
This research develops a novel data-integrated simulation to evaluate nurse-patient assignments (SIMNA) based on a real data set provided by a northeast Texas hospital. Tree-based models and kernel density estimation (KDE) were utilized to extract important knowledge from the data for the simulation. Classification and Regression Tree models, data mining tools for prediction and classification, were used to develop five tree structures: (a) four classification trees from which transition probabilities for nurse movements are determined, and (b) a regression tree from which the amount of time a nurse spends in a location is predicted based on factors such as the primary diagnosis of a patient and the type of nurse. Kernel density estimation is used to estimate the continuous distribution for the amount of time a nurse spends in a location. Results obtained from SIMNA to evaluate nurse-patient assignments in Medical/Surgical unit I of the northeast Texas hospital are discussed.